Stochastic realization theory for exact and approximate multiscale models

نویسنده

  • Dewey Tucker
چکیده

The thesis provides a detailed analysis of the independence structure possessed by multiscale models and demonstrates that such an analysis provides important insight into the multiscale stochastic realization problem. Multiscale models constitute a broad class of probabilistic models which includes the well-known subclass of multiscale autoregressive (MAR) models. MAR models have proven useful in a variety of different application areas, due to the fact that they provide a rich set of tools for various signal processing tasks. In order to use these tools, however, a MAR or multiscale model must first be constructed to provide an accurate probabilistic description of the particular application at hand. This thesis addresses this issue of multiscale model identification or realization. Previous work in the area of MAR model identification has focused on developing algorithms which decorrelate certain subsets of random vectors in an effort to design an accurate model. In this thesis, we develop a set-theoretic and graph-theoretic framework for better understanding these types of realization algorithms and for the purpose of designing new such algorithms. The benefit of the framework developed here is that it separates the realization problem into two understandable parts – a dichotomy which helps to clarify the relationship between the exact realization problem, where a multiscale model is designed to exactly satisfy a probabilistic constraint, and the approximate realization problem, where the constraint is only approximately satisfied. The first part of our study focuses on developing a better understanding of the independence structure exhibited by multiscale models. As a result of this study, we are able to suggest a number of different sequential procedures for realizing exact multiscale models. The second part of our study focuses on approximate realization, where we define a relaxed version of the exact multiscale realization problem. We show that many of the ideas developed for the exact realization problem may be used to better understand the approximate realization problem and to develop algorithms for solving it. In particular, we propose an iterative procedure for solving the approximate realization problem, and we show that the parameterized version of this procedure is equivalent to the wellknown EM algorithm. Finally, a specific algorithm is developed for realizing a multiscale model which matches the statistics of a Gaussian random process. Thesis Supervisor: Alan S. Willsky Professor of Electrical Engineering and Computer Science

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Stochastic Realization

We develop a realization theory for a class of Inultiscale stochastic processes having whitenoise driven, scale-recursive dynamics that are indexed by the nodes of a tree. Given the correlation structure of a 1-D or 2-D random process, our methods provide a systematic way to realize the given correlation as the finest scale of a multiscale process. Motivated by Akaike's use of canonical correla...

متن کامل

A canonical correlations approach to multiscale stochastic realization

We develop a realization theory for a class of multiscale stochastic processes having white-noise driven, scale-recursive dynamics that are indexed by the nodes of a tree. Given the correlation structure of a 1-D or 2-D random process, our methods provide a systematic way to realize the given correlation as the finest scale of a multiscale process. Motivated by Akaike’s use of canonical correla...

متن کامل

Multiscale Autoregressive Models and Wavelets

The multiscale autoregressive (MAR) framework was introduced to support the development of optimal multiscale statistical signal processing. Its power resides in the fast and flexible algorithms to which it leads. While the MAR framework was originally motivated by wavelets, the link between these two worlds has been previously established only in the simple case of the Haar wavelet. The first ...

متن کامل

Computationally Eecient Stochastic Realization for Internal Multiscale Autoregressive Models *

In this paper we develop a stochastic realization theory for multiscale autoregressive (MAR) processes that leads to computationally eecient realization algorithms. The utility of MAR processes has been limited by the fact that the previously known general purpose realization algorithm, based on canonical correlations, leads to model inconsistencies and has complexity quartic in problem size. O...

متن کامل

Computationally Ecient Stochastic Realization for Internal Multiscale Autoregressive Models*

In this paper we develop a stochastic realization theory for multiscale autoregressive (MAR) processes that leads to computationally ecient realization algorithms. The utility of MAR processes has been limited by the fact that the previously known general purpose realization algorithm, based on canonical correlations, leads to model inconsistencies and has complexity quartic in problem size. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005